Statistics 001 - Elementary Statistics I for the Social Sciences » Spring 2020 » Exam 3

Need help with your exam preparation?

Question #1
A chi-square test of significance is essentially concerned with:
A.   the distinction between two interval level variables
B.   the distinction between expected and observed frequencies
C.   only observed frequences
D.   the distinction between one ordinal and one interval level variable
Question #2
Expected frequences represent:
A.   the frequences one would expect if the research hypothesis was true
B.   The frequences one would expect if the null hypothesis was true
C.   The frequences one would expect if the sample was truly representative of the population
D.   the frequences one would expect if the sample was normally distributed
Question #3
If a chi-square expected frequency is less than 10, one should:
A.   reject the null hypothesis
B.   accept the null hypothesis
C.   use Yates’ adjusted formula
D.   square all values
Question #4
You take a sample and want to compare the results to the population from which it was drawn. The independent variable is “race” and the dependent variable is a yes/no response to whether they favor the death penalty. What test would you use to see if your results were significant?
A.   a difference between means test
B.   a parametric test
C.   Pearson’s r
D.   a chi-square test
Question #5
Nonparametric test are:
A.   only applicble to interval level data
B.   more “robust” than parametric tests
C.   not applicable for nominal data
D.   less powerful than parametric tests
Question #6
The media test determines:
A.   the likelihood that the median will be the most frequent score
B.   the likelihood that the mean will be greater than the media
C.   the likelihood the mean and the median and the moe will all have the same value
D.   the likelihood that the samples were drawn from populations with equal medians
Question #7
Which of the following exemplifies a research hypothesis?
A.   Juveniles do ot differ from adults in criminal offense behaviors
B.   Senior citizens driving behaviors do not differ from those of teenagers
C.   Gang members differ from non-gang members in perceptions of violence
D.   Catholics and protestants pray the same amount
Question #8
When we accept the nuall hypothesis, we:
A.   Have an obtained (calculated) t value greater than our critical (table) value
B.   conclude that the sampling error is responsible for our obtained difference
C.   Claim that a significant difference exists between groups
D.   Have committed a Type 2 error
Question #9
If we reject the null hypothesis when in reality the null hypothesis is true, we have:
A.   Made the correct decision
B.   Made a Type 2 error
C.   Made a Type 1 error
D.   None of the above
Question #10
Compared to the .05 level of significance, .01 level of significance :
A.   Means a higher probability of the obtained difference being a result of sampling error
B.   Means a skewed distribution
C.   Means a lower probability of the obtained difference being a result of sampling error
D.   Means a normal distribution
Question #11
The standard error of the difference between means
A.   requires only one samples characteristics
B.   does not include the sample sizes
C.   cannot be properly estimated
D.   is an estimate of the standard deviation in a sampling distribution of difference
Question #12
The larger the value of our obtained (calculated) t:
A.   The more probable that our results are due to chance alone
B.   The less probable that our results are due to chance alone
C.   The larger the probability of making a Type 1 error
D.   The larger our critical (table) t value
Question #13
Which of the following is true of a before – and – after “repeated measures” t-test?
A.   The null hypothesis states that the two groups are not equal
B.   Two scores exist for each respondent
C.   The degrees of freedome is based on the total number of scores.
D.   None of the above is true.
Question #14
A .05 level of significance corresonds with:
A.   a probability of the findings being the result of sampling error
B.   a 95% confidence interval
C.   a z-score critical valu of 1.96
D.   all of the above.
Question #15
The variation found among raw scores in a particular group is referred to as:
A.   Total variation
B.   Between group variation
C.   Within group variation
D.   None of the above
Question #16
The sum of squares is the method for measuring variation:
A.   Within groups
B.   For the total sample
C.   Between groups
D.   All of the abve
Question #17
The mean square is
A.   Calculated by dividing the sum of squares between by the degrees of freedom between
B.   Calculated by dividing the sum of squares within by the degrees of freedom within
C.   Is a method for assessing variation in conjunction with the sum of squares
D.   All of the above.
Question #18
The F ratio is calculated by:
A.   Dividing the mean square between by the mean square within
B.   Dividing the degrees of freedom within by degrees of freedom between
C.   Dividing the mean square within by the mean square between
D.   None of the above
Question #19
The larger the value of the calculated F ratio:
A.   The larger the mean square within groups compared to the mean square between groups.
B.   The more likely an oberved difference is due to chance
C.   The less likely an observed difference is due to chance
D.   The larger the sum of squares within groups compared to the sum of squares between groups
Question #20
Which is NOT true of an Analysis of Variance (ANOVA)
A.   All variances are assumed to be equal
B.   All samples must be selected randomly
C.   All data must be interval level data
D.   All of the above are true
Question #21
As the observed frequence deviate from the expected frequencies, the value of the chi square statistic:
A.   Gets smaller
B.   Does not change
C.   Impossible to say
D.   Gets larger
Question #22
A sample of 30 parents (group 1) and a sample of 35 non-parents (Group 2) were surveyed concerning their opinions on contraception-based sex education in public schools. 63% of parents and 84% of nom-parents approve of teaching contraception-based sex education in public schools. Which of the following is a research hypothesis for this research scenario?
A.   There is a diference in opinions on teaching contraception-based sex educaiton in public schools between parent and non-parents
B.   There is a diference in opinions on teaching contraception-based sex educaiton in public schools between parent and non-parents
C.   There is no diference in opinions on teaching contraception-based sex educaiton in public schools between parent and non-parents
D.   There is no diference in opinions on teaching contraception-based sex educaiton in public schools between parent and non-parents, in the population
Question #23
A sample of 30 parents (group 1) and a sample of 35 non-parents (group 2) were surveyed concerning their opinions on contraception-based sex education in public schools. 63% of parents and 84% of non-parents approve of teaching contraception-based education in publich schools. Which set of formulas should you use to test for the difference groups?
A.   Chi-square
B.   ANOVA
C.   Before/after testing (same sample measured twice)
D.   Testing the difference between means for independent samples
E.   Two sample test of proportions (AKA Difference between proportions)
Question #24
A sample of 30 parents (group 1) and a sample of 35 non parents (group 2) were surveyed concerning their opinions on contraception-based sex education in public schools. 63% of parents and 84% of non-parents approve of teaching contraception – based sex education in public schools. Now, using the set of formulas you selected previously, test for the significant differene between proportions of parents and non-parents that approve of contraception-based sex education in public schools. While completing your calculations, round to two decimal places (i.e. foreach step, round to two decimal places). What is your calculated (i.e. obtained) value?
A.   -0.88
B.   0.88
C.   -2.1
D.   2.1
Question #25
A sample of 30 parents (group 1) and a sample of 35 non-parents (group 2) were surveyed concerning their opinions on contraception-based sex education in public schools. 63% of parents and 84% of non-parents approve of teaching contraception-based sex education in public schools. What ist he critical value (C.V) that you need to compare your calculated/obtained value against?
A.   2
B.   1.96
C.   2.58
D.   1.98
Question #26
A sample of 30 parents (group 1) and a sample of 35 non-parents (group 2) were surveyed concerning teir opinions on contraception-based sex education in public schools. 63% of parents and 84% of non-parents approve of teaching contraception-based sex education in public schools. Based on your previous calculations, do you reject or retain the null hypothesis?
A.   retain.
B.   reject
Question #27
A sample of 30 parents (group 1) and a sample of 35 non-parents (group 2) were surveyed concerning teir opinions on contraception-based sex education in public schools. 63% of parents and 84% of non-parents approve of teaching contraception-based sex education in public schools. Based on your previous calculations, are the group differences statistically significant (s.s)?
A.   Yes, it is s.s.
B.   No, it is NOT s.s.
Question #28
A sample of 30 parents (group 1) and a sample of 35 non-parents (group 2) were surveyed concerning teir opinions on contraception-based sex education in public schools. 63% of parents and 84% of non-parents approve of teaching contraception-based sex education in public schools. Based on your previous calculations, which is a reasonable interpretation?
A.   Parents and non-parents in the population, differ in their views on contraception-based sex education
B.   Parents and non-parents in the sample groups, do not differe in their views on contraception-based sex education.
C.   Parents and non-parents in the population, do not differ in their views on contraception-based sex education
D.   No reasonable interpreatations can be drawn from this dataset since it is based on sample data

Need help with your exam preparation?